86 research outputs found

    Modeling the Jovian subnebula: II - Composition of regular satellites ices

    Full text link
    We use the evolutionary turbulent model of Jupiter's subnebula described by Alibert et al. (2005a) to constrain the composition of ices incorporated in its regular icy satellites. We consider CO2, CO, CH4, N2, NH3, H2S, Ar, Kr, and Xe as the major volatile species existing in the gas-phase of the solar nebula. All these volatile species, except CO2 which crystallized as a pure condensate, are assumed to be trapped by H2O to form hydrates or clathrate hydrates in the solar nebula. Once condensed, these ices were incorporated into the growing planetesimals produced in the feeding zone of proto-Jupiter. Some of these solids then flowed from the solar nebula to the subnebula, and may have been accreted by the forming Jovian regular satellites. We show that ices embedded in solids entering at early epochs into the Jovian subdisk were all vaporized. This leads us to consider two different scenarios of regular icy satellites formation in order to estimate the composition of the ices they contain. In the first scenario, icy satellites were accreted from planetesimals that have been produced in Jupiter's feeding zone without further vaporization, whereas, in the second scenario, icy satellites were accreted from planetesimals produced in the Jovian subnebula. In this latter case, we study the evolution of carbon and nitrogen gas-phase chemistries in the Jovian subnebula and we show that the conversions of N2 to NH3, of CO to CO2, and of CO to CH4 were all inhibited in the major part of the subdisk. Finally, we assess the mass abundances of the major volatile species with respect to H2O in the interiors of the Jovian regular icy satellites. Our results are then compatible with the detection of CO2 on the surfaces of Callisto and Ganymede and with the presence of NH3 envisaged in subsurface oceans within Ganymede and Callisto.Comment: 9 pages, A&A, in pres

    On the volatile enrichments and composition of Jupiter

    Full text link
    Using the clathrate hydrates trapping theory, we discuss the enrichments in volatiles in the atmosphere of Jupiter measured by the \textit{Galileo} probe in the framework of new extended core-accretion planet formation models including migration and disk evolution. We construct a self-consistent model in which the volatile content of planetesimals accreted during the formation of Jupiter is calculated from the thermodynamical evolution of the disk. Assuming CO2:CO:CH4 = 30:10:1 (ratios compatible with ISM measurements), we show that we can explain the enrichments in volatiles in a way compatible with the recent constraints set from internal structure modeling on the total amount of heavy elements present in the planet.Comment: Accepted in ApJLetter

    On the composition of ices incorporated in Ceres

    Get PDF
    We use the clathrate hydrate trapping theory and gas drag formalism to calculate the composition of ices incorporated in the interior of Ceres. Utilizing a time-dependent solar nebula model, we show that icy solids can drift from beyond 5 au to the present location of the asteroid and be preserved from vaporization. We argue that volatiles were trapped in the outer solar nebula in the form of clathrate hydrates, hydrates and pure condensates prior to having been incorporated in icy solids and subsequently in Ceres. Under the assumption that most of volatiles were not vaporized during the accretion phase and the thermal evolution of Ceres, we determine the per mass abundances with respect to H2O of CO2, CO, CH4, N2, NH3, Ar, Xe and Kr in the interior of the asteroid. The Dawn space mission, scheduled to explore Ceres in August 2014, may have the capacity to test some predictions. We also show that an in situ measurement of the D/H ratio in H2O in Ceres could constrain the distance range in the solar nebula where its icy planetesimals were produce

    Formation of Giant Planets- An Attempt in Matching Observational Constraints

    Get PDF
    We present models of giant planet formation, taking into account migration and disk viscous evolution. We show that migration can significantly reduce the formation timescale bringing it in good agreement with typical observed disk lifetimes. We then present a model that produces a planet whose current location, core mass and total mass are comparable with the one of Jupiter. For this model, we calculate the enrichments in volatiles and compare them with the one measured by the Galileo probe. We show that our models can reproduce both the measured atmosphere enrichments and the constraints derived by Guillot et al. (2004), if we assume the accretion of planetesimals with ices/rocks ratio equal to 4, and that a substantial amount of CO2 was present in vapor phase in the solar nebula, in agreement with ISM measurement

    Determination of the minimum masses of heavy elements in the envelopes of Jupiter and Saturn

    Full text link
    We calculate the minimum mass of heavy elements required in the envelopes of Jupiter and Saturn to match the observed oversolar abundances of volatiles. Because the clathration efficiency remains unknown in the solar nebula, we have considered a set of sequences of ice formation in which the fraction of water available for clathration is varied between 0 and 100 %. In all the cases considered, we assume that the water abundance remains homogeneous whatever the heliocentric distance in the nebula and directly derives from a gas phase of solar composition. Planetesimals then form in the feeding zones of Jupiter and Saturn from the agglomeration of clathrates and pure condensates in proportions fixed by the clathration efficiency. A fraction of Kr and Xe may have been sequestrated by the H3+ ion in the form of stable XeH3+ and KrH3+ complexes in the solar nebula gas phase, thus implying the formation of at least partly Xe- and Kr-impoverished planetesimals in the feeding zones of Jupiter and Saturn. These planetesimals were subsequently accreted and vaporized into the hydrogen envelopes of Jupiter and Saturn, thus engendering volatiles enrichments in their atmospheres, with respect to hydrogen. Taking into account both refractory and volatile components, and assuming plausible molecular mixing ratios in the gas phase of the outer solar nebula, we show that it is possible to match the observed enrichments in Jupiter and Saturn, whatever the clathration efficiency. Our calculations predict that the O/H enrichment decreases from 6.7 to 5.6 times solar (O/H) in the envelope of Jupiter and from 18.1 to 15.4 times solar (O/H) in the envelope of Saturn with the growing clathration efficiency in the solar nebula.Comment: Accepted for publication in The Astrophysical Journa

    Clathration of Volatiles in the Solar Nebula and Implications for the Origin of Titan's atmosphere

    Full text link
    We describe a scenario of Titan's formation matching the constraints imposed by its current atmospheric composition. Assuming that the abundances of all elements, including oxygen, are solar in the outer nebula, we show that the icy planetesimals were agglomerated in the feeding zone of Saturn from a mixture of clathrates with multiple guest species, so-called stochiometric hydrates such as ammonia hydrate, and pure condensates. We also use a statistical thermodynamic approach to constrain the composition of multiple guest clathrates formed in the solar nebula. We then infer that krypton and xenon, that are expected to condense in the 20-30 K temperature range in the solar nebula, are trapped in clathrates at higher temperatures than 50 K. Once formed, these ices either were accreted by Saturn or remained embedded in its surrounding subnebula until they found their way into the regular satellites growing around Saturn. In order to explain the carbon monoxide and primordial argon deficiencies of Titan's atmosphere, we suggest that the satellite was formed from icy planetesimals initially produced in the solar nebula and that were partially devolatilized at a temperature not exceeding 50 K during their migration within Saturn's subnebula. The observed deficiencies of Titan's atmosphere in krypton and xenon could result from other processes that may have occurred both prior or after the completion of Titan. Thus, krypton and xenon may have been sequestrated in the form of XH3+ complexes in the solar nebula gas phase, causing the formation of noble gas-poor planetesimals ultimately accreted by Titan. Alternatively, krypton and xenon may have also been trapped efficiently in clathrates located on the satellite's surface or in its atmospheric haze.Comment: Accepted for publication in The Astrophysical Journa

    New Jupiter and Saturn formation models meet observations

    Full text link
    The wealth of observational data about Jupiter and Saturn provides strong constraints to guide our understanding of the formation of giant planets. The size of the core and the total amount of heavy elements in the envelope have been derived from internal structure studies by Saumon & Guillot (2004). The atmospheric abundance of some volatile elements has been measured {\it in situ} by the {\it Galileo} probe (Mahaffy et al. 2000, Wong et al. 2004) or by remote sensing (Briggs & Sackett 1989, Kerola et al. 1997). In this Letter, we show that, by extending the standard core accretion formation scenario of giant planets by Pollack et al. (1996) to include migration and protoplanetary disk evolution, it is possible to account for all of these constraints in a self-consistent manner.Comment: Accepted in APjL. 2 color figure

    Constraints from deuterium on the formation of icy bodies in the Jovian system and beyond

    Full text link
    We consider the role of deuterium as a potential marker of location and ambient conditions during the formation of small bodies in our Solar system. We concentrate in particular on the formation of the regular icy satellites of Jupiter and the other giant planets, but include a discussion of the implications for the Trojan asteroids and the irregular satellites. We examine in detail the formation of regular planetary satellites within the paradigm of a circum-Jovian subnebula. Particular attention is paid to the two extreme potential subnebulae - "hot" and "cold". In particular, we show that, for the case of the "hot" subnebula model, the D:H ratio in water ice measured from the regular satellites would be expected to be near-Solar. In contrast, satellites which formed in a "cold" subnebula would be expected to display a D:H ratio that is distinctly over-Solar. We then compare the results obtained with the enrichment regimes which could be expected for other families of icy small bodies in the outer Solar system - the Trojan asteroids and the irregular satellites. In doing so, we demonstrate how measurements by Laplace, the James Webb Space Telescope, HERSCHEL and ALMA will play an important role in determining the true formation locations and mechanisms of these objects.Comment: Accepted and shortly to appear in Planetary and Space Science; 11 pages with 5 figure

    A primordial origin for the atmospheric methane of Saturn's moon Titan

    Full text link
    The origin of Titan's atmospheric methane is a key issue for understanding the origin of the Saturnian satellite system. It has been proposed that serpentinization reactions in Titan's interior could lead to the formation of the observed methane. Meanwhile, alternative scenarios suggest that methane was incorporated in Titan's planetesimals before its formation. Here, we point out that serpentinization reactions in Titan's interior are not able to reproduce the deuterium over hydrogen (D/H) ratio observed at present in methane in its atmosphere, and would require a maximum D/H ratio in Titan's water ice 30% lower than the value likely acquired by the satellite during its formation, based on Cassini observations at Enceladus. Alternatively, production of methane in Titan's interior via radiolytic reactions with water can be envisaged but the associated production rates remain uncertain. On the other hand, a mechanism that easily explains the presence of large amounts of methane trapped in Titan in a way consistent with its measured atmospheric D/H ratio is its direct capture in the satellite's planetesimals at the time of their formation in the solar nebula. In this case, the mass of methane trapped in Titan's interior can be up to 1,300 times the current mass of atmospheric methane.Comment: Accepted for publication in Icaru
    • 

    corecore